Extensions 1→N→G→Q→1 with N=C2 and Q=C23.11D4

Direct product G=N×Q with N=C2 and Q=C23.11D4
dρLabelID
C2×C23.11D464C2xC2^3.11D4128,1122


Non-split extensions G=N.Q with N=C2 and Q=C23.11D4
extensionφ:Q→Aut NdρLabelID
C2.1(C23.11D4) = C24.5Q8central extension (φ=1)64C2.1(C2^3.11D4)128,171
C2.2(C23.11D4) = C24.52D4central extension (φ=1)64C2.2(C2^3.11D4)128,172
C2.3(C23.11D4) = C24.632C23central extension (φ=1)128C2.3(C2^3.11D4)128,174
C2.4(C23.11D4) = C24.633C23central extension (φ=1)128C2.4(C2^3.11D4)128,175
C2.5(C23.11D4) = C24.635C23central extension (φ=1)128C2.5(C2^3.11D4)128,177
C2.6(C23.11D4) = (C2×C4).24D8central stem extension (φ=1)64C2.6(C2^3.11D4)128,803
C2.7(C23.11D4) = (C2×C4).19Q16central stem extension (φ=1)128C2.7(C2^3.11D4)128,804
C2.8(C23.11D4) = C428C4⋊C2central stem extension (φ=1)64C2.8(C2^3.11D4)128,805
C2.9(C23.11D4) = (C2×Q8).109D4central stem extension (φ=1)128C2.9(C2^3.11D4)128,806
C2.10(C23.11D4) = C23.12D8central stem extension (φ=1)64C2.10(C2^3.11D4)128,807
C2.11(C23.11D4) = C24.88D4central stem extension (φ=1)64C2.11(C2^3.11D4)128,808
C2.12(C23.11D4) = C24.89D4central stem extension (φ=1)64C2.12(C2^3.11D4)128,809
C2.13(C23.11D4) = (C2×C8).55D4central stem extension (φ=1)64C2.13(C2^3.11D4)128,810
C2.14(C23.11D4) = (C2×C8).165D4central stem extension (φ=1)64C2.14(C2^3.11D4)128,811
C2.15(C23.11D4) = C42.9D4central stem extension (φ=1)324C2.15(C2^3.11D4)128,812
C2.16(C23.11D4) = (C2×C8).D4central stem extension (φ=1)168+C2.16(C2^3.11D4)128,813
C2.17(C23.11D4) = (C2×C8).6D4central stem extension (φ=1)328-C2.17(C2^3.11D4)128,814

׿
×
𝔽